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A B S T R A C T

Multicopy plasmids play an important role in bacterial ecology and evolution by accelerating the rate of
adaptation and providing a platform for rapid gene amplification and evolutionary rescue. Despite the relevance
of plasmids in bacterial evolutionary dynamics, evaluating the population-level consequences of randomly
segregating and replicating plasmids in individual cells remains a challenging problem, both in theory and
experimentally. In recent years, technological advances in fluorescence microscopy and microfluidics have al-
lowed studying temporal changes in gene expression by quantifying the fluorescent intensity of individual cells
under controlled environmental conditions. In this paper, we will describe the manufacture, experimental setup,
and data analysis pipeline of different microfluidic systems that can be used to study plasmid dynamics, both in
single-cells and in populations. To illustrate the benefits and limitations of microfluidics to study multicopy
plasmid dynamics, we will use an experimental model system consisting on Escherichia coli K12 carrying non-
conjugative, multicopy plasmids (19 copies per cell, in average) encoding different fluorescent markers and β-
lactam resistance genes. First, we will use an image-based flow cytometer to estimate changes in the allele
distribution of a heterogeneous population under different selection regimes. Then we will use a mothermachine
microfluidic device to obtain time-series of fluorescent intensity of individual cells to argue that plasmid seg-
regation and replication dynamics are inherently stochastic processes. Finally, using a microchemostat, we track
thousands of cells in time to reconstruct bacterial lineages and evaluate the allele frequency distributions that
emerge in response to a range of selective pressures.

1. Introduction

Plasmids are significant drivers of microbial ecology and evolution
by horizontally transmitting beneficial genes and providing recipient
cells with access to novel ecological niches (Wiedenbeck and Cohan,
2011). But the contribution of plasmids to bacterial evolutionary dy-
namics is not reduced to merely acting as vehicles for the horizontal
dissemination of genetic information between strains and species. Re-
cent studies have enlisted a series of benefits associated with carrying
genes in plasmids, as opposed to encoding them in the chromosome.

The fixation probability of beneficial mutations and the rate of
segregational loss are determined by the number of plasmid copies
carried by each cell (Stewart and Levin, 1977) and, therefore, copy
number control, as well as timing and mode of plasmid segregation, are
important factors influencing the population genetics of plasmid-
bearing populations (Paulsson, 2002; Rodriguez-Beltran et al., 2019;

Ilhan et al., 2019). As a result, the stochastic nature of replication and
segregation of multi-copy plasmids has been studied extensively, both
in theory (Ishii et al., 1978; Nordström, 1984; Keasling and Palsson,
1989; Paulsson and Ehrenberg, 2001) and in laboratory conditions
(Nordström et al., 1984; Novick, 1987; Del Solar and Espinosa, 2000),
showing that copy-number control is a noisy process with events ran-
domly distributed in time (Seneta and Tavaré, 1983) and, therefore,
intracellular fluctuations in copy numbers can be seen as a stochastic
dynamical system (Keasling and Palsson, 1989).

Similarly, plasmid partition is a random process such that, in the
absence of plasmid addiction systems (Mochizuki et al., 2006; Baxter
and Funnell, 2015), results in an equal chance for each plasmid to be
inherited to each daughter cell and, therefore, in a binomial probability
of producing a plasmid-free cell upon division. Of course, this is a
simplification, as high-copy plasmids can produce dimers through
homologous recombination (Summers, 1991) and intracellular spatial
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structure can result in the asymmetric segregation of plasmids upon
division (Wang et al., 2016). Also, low-copy plasmids tend to have
active partitioning mechanisms that organize plasmids around a cen-
tromere-like site to segregate plasmids symmetrically between daughter
cells at division (Salje, 2010). In contrast, plasmids that do not encode
partition systems decrease the probability of segregational loss by being
present in high-copy-numbers.

But carrying multiple plasmid copies not only increases plasmid
stability but can also have important consequences in the adaptive
dynamics of plasmid-bearing populations, for instance increasing the
rate of fixation of beneficial mutations (Galitski et al., 1995) and ac-
celerating the rate of adaptation to deteriorating environmental con-
ditions (San Millan et al., 2016). Furthermore, once a beneficial mu-
tation appears in a plasmid-borne gene, multicopy plasmids can provide
a platform for rapid gene amplification (Nicoloff et al., 2019). By in-
creasing gene dosage, bacterial cells have been reported to transiently
enhancing the level of resistance to antibiotics (Santos-Lopez et al.,
2017), allowing the population to increase in size and, as a result, in-
creasing the probability of appearance of secondary drug-resistant
mutations (Sun et al., 2018).

Moreover, multicopy plasmids produce genomic regions of local
polyploidy that can generate heterozygous cells where different alleles
coexist at a cellular level, a phenomenon also referred to as hetero-
plasmy (Novick, 1987). As a result, individual cells can increase their
genetic diversity and enable populations to circumvent evolutionary
trade-offs (Rodriguez-Beltran et al., 2018). It has also been reported
that the multicopy plasmids can increase standing genetic variation in
the population, thus enabling bacterial populations to escape extinction
following a sudden environmental change (Santer and Uecker, 2019).
In the absence of selection, however, random genetic drift of multicopy
plasmids during cell division (also known as segregational drift (Ilhan
et al., 2019)) can reduce the rate of adaptation, despite high-copy
plasmids having increased mutational supply.

By focusing on large population sizes, laboratory studies have been
able to characterize the interaction between genetic dominance and
strength of selection, and correlate these traits with the probability of
fixation of mutant alleles and the horizontal transmission of plasmid-
borne genes (Rodriguez-Beltran et al., 2019). Other plasmid evolution
studies have focused on compensatory adaptation (San Millan et al.,
2014; Wein et al., 2019; Hall et al., 2020), horizontal transmission
(Lopatkin et al., 2017) and co-evolution between hosts and plasmids
(Harrison et al., 2015). Altogether, these results highlight the complex
interaction between the intracellular plasmid dynamics and the evolu-
tionary dynamics of bacterial populations.

1.1. Single-cell microfluidics

In the past decades, biology and medicine have been rapidly evol-
ving towards using quantitative tools to study complex biological sys-
tems. Interdisciplinary studies use statistical, mathematical, and com-
putational tools, combined with experimental and molecular biology, to
understand the behavior of individual cells within a population
(Artemova et al., 2015) and to predict their response to environmental
change (El Meouche and Dunlop, 2018). The benefit of implementing a
bottom-up approach is that we can follow the life history of individual
cells, instead of averaging large populations and making inferences
about cellular processes from population-level observations.

Fluorescence microscopy has been previously used to estimate
plasmid copy-numbers (Ng et al., 2010; Løbner-Olesen, 1999), as well
as to visualize conjugation (Babić et al., 2008), to study horizontal
transmission of plasmids (del Campo et al., 2012) and to explore the
range of different plasmid-host associations (Shintani et al., 2014). It
has also been used to evaluate in situ conjugation in bacterial plant
endosymbionts (Bañuelos-Vazquez et al., 2019) and horizontal gene
transfer in microbiomes (Pinilla-Redondo et al., 2018). Moreover, with
the use of fluorescent probes, microscopy studies have been able to

study with great detail the spatio-temporal distribution of plasmids
inside a cell, as well as the segregation dynamics occurring upon divi-
sion (Wang et al., 2016; Reyes-Lamothe et al., 2013; Hsu and Chang,
2019). These single-molecule studies, however, only consider a small
set of cells and are constrained to short-term experiments in constant
environments.

On the other hand, microfluidic devices have been used in combi-
nation with fluorescence to obtain time-series of gene expression of
individual cells (Young et al., 2012; Tomanek et al., 2020). Microfluidic
devices can be fabricated using soft lithography (Zhang et al., 2012; Pan
et al., 2011), micro-droplets (Boedicker et al., 2009) and protein-based
micro-3D printing (Connell et al., 2014). In general, the goal of these
devices is to restrict the movement of bacterial cells to observe them for
long time intervals with the aim of studying, for instance, gene ex-
pression dynamic (Young et al., 2012; Baumgart et al., 2017; Bennett
and Hasty, 2009; Locke and Elowitz, 2009), as well as to evaluate the
consequences of asymmetric division and cell-to-cell variability of key
cellular processes (El Meouche and Dunlop, 2018; Mosheiff et al., 2017;
Bergmiller et al., 2017). A brief overview of different microfluidic de-
vices and their uses can be found in (Bennett and Hasty, 2009; Potvin-
Trottier et al., 2018).

A myriad of computer vision algorithms have been developed to
analyze time-lapse movies acquired using a fluorescent microscope
(Young et al., 2012; Van Valen et al., 2016; Berg et al., 2019a;
Balomenos et al., 2017; Arnoldini et al., 2014; Sachs et al., 2016;
Lugagne et al., 2019; Kamentsky et al., 2011). Of note, Schnitzcell
(Young et al., 2012) was designed to study colonies of rod-shaped
bacteria (e.g. Escherichia coli and Bacillus subtilis) growing in agar pads,
although it is not longer maintained. Recently, novel computational
techniques based on machine learning have been successfully in-
corporated into bio-image analysis pipelines. For example, DeLTA
(Lugagne et al., 2019) and DeepCell (Van Valen et al., 2016) implement
deep convolutional neural networks to perform accurate segmentation
and lineage reconstruction, while Ilastik (Berg et al., 2019b) provides a
user-friendly suite for image segmentation and cell tracking.

Besides quantifying single-cell fluorescent intensity, imaging algo-
rithms can also be used to record division events and to estimate du-
plication and elongation rates of individual bacterial cells. In con-
sequence, microfluidics have been used to study cell growth and
homeostasis (Wallden et al., 2016), senescence (Ackermann et al.,
2003; Lindner et al., 2008) and bacterial adaptation to stress (Łapińska
et al., 2019; Mathis and Ackermann, 2016; Patange et al., 2018). By
correlating physiological and morphological properties of individual
cells with the level of expression of a gene of interest, previous studies
have shown that phenotypic heterogeneity can provide functional
benefits for bacterial populations, for instance allowing the im-
plementation of division of labor strategies or increasing survival of the
population to fluctuating environmental conditions (Ackermann,
2015). Another benefit of single-cell microfluidics is that it allows us to
estimate growth rate differences and survival rates in response to en-
vironmental change. Therefore microfluidics has been proposed as a
strategy for rapid antimicrobial susceptibility determination (Baltekin
et al., 2017; Aroonnual et al., 2017) and to study gene regulatory
changes that emerge in response to genetic and environmental pertur-
bations (Rochman et al., 2016; Chait et al., 2017)..

In this paper, we combine microfluidics, fluorescent microscopy,
and computer vision algorithms to study the interaction between mul-
ticopy plasmids and bacterial fitness in dynamic environments. To
achieve this goal, we use a previously characterized experimental
system consisting of plasmid-mediated β-lactam resistance evolution in
Escherichia coli (Rodriguez-Beltran et al., 2018). The objective of this
manuscript is to describe the use of fluorescence and multiple image-
based technologies to identify the source of noise in the replication and
segregation dynamics of multicopy plasmids, as well as to evaluate the
effect of selection imposed by antimicrobial substances on the dis-
tribution of plasmids exhibited by single-cells and bacterial
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populations.

2. Material and methods

2.1. Bacterial strains and plasmids

In this study, we use derivatives of Escherichia coli MG1655 strains
previously published (San Millan et al., 2016; Rodriguez-Beltran et al.,
2018). In short, a β-lactamase gene blaTEM−1 that confers resistance to
ampicillin (AMP) was inserted into a small non-transmissible multi-
copy plasmid p3655 derived from pSU18T and pBADgfp2, with a
ColE1-like (p15a) origin of replication (Le Roux et al., 2007), a plasmid
referred to in this study as pBGT-1. This plasmid also contains an eGFP
gene under an arabinose promoter with an araC repressor. Another
plasmid, pBRT, was derived from pBGT by replacing the blaTEM−1 gene
with blaTEM−12, a TEM variant that confers resistance to ceftazidime
(CAZ) and mild resistance to ampicillin (AMP). Also, eGFP was replaced
by a DsRed gene, and the native cat resistance gene was knocked-out. In
this study, we refer to heterozygous cells simultaneously carrying both
plasmids as HT, while G1 and R12 denote homozygous cells bearing
pBGT-1 and pBRT-12, respectively (see Fig. 1A for maps of these
plasmids). It is important to emphasize that pBGT-1 and pBRT-12 share
an origin of replication and only differ in the fluorescent marker and the
TEM variant carried. Therefore the plasmid copy-number control

mechanism regulates the maximum number of plasmids carried in each
cell, independently of the plasmid type.

2.2. Media and growth conditions

Experiments were performed using Lysogeny Broth- Lenox (LB)
(Sigma-L3022) supplemented with arabinose (0.5% w/v). Antibiotic
minimum inhibitory concentrations (MIC) were calculated using stan-
dard dose-response curves. To balance HT cells, we prepared the
overnight culture using LB media supplemented with 15 mg/l of
chloramphenicol and 0.5 mg/l ceftazidime. Stocks solutions at 20% of
Arabinose (Sigma-A91906) were prepared by diluting 2 g of arabinose
in 10 ml DD water sterilized by filtration. AMP stock solutions (100 mg/
ml) were prepared by diluting ampicillin (Sigma-A0166) directly in LB
and adding arabinose (0.5%). Stock solutions of ceftazidime (Sigma-
A6987) were diluted in water at 10 mg/ml and sterilized by filtering.
Chloramphenicol (Sigma-C0378) stock solutions were prepared at
50 mg/ml in ethanol (97%). Population-level experiments were per-
formed using 20 ml of LB media in 125 ml titration flasks. Three re-
plicates of HT cells cultures were grown in balancing media for 24 h in a
shaker incubator at 37 °C and 200 rpm.

Fig. 1. A) Maps of plasmids used in this study. Composite microscopy image shows a heterogeneous E. coli population composed of cells carrying only pBRT-12
(denoted as R12, in magenta), pBGT (G1, in green) and a combination of both plasmids (HT). B) Diagram illustrating a polar representation of multi-channel
fluorescent data. After normalizing fluorescence intensities obtained in GFP and DsRed channels, each cell can be represented as a point in a two-dimensional polar
coordinate system, where the relative fluorescence between DsRed and GFP channels can be approximated by an angle and the absolute fluorescence intensity from
its distance to the origin. We argue that absolute fluorescence is correlated with plasmid copy-number (PCN) and relative fluorescence to the plasmid fraction (PF). C)
Raw cytometry data of a heterogeneous population illustrates that a flow cytometer can be used to identify different subpopulations, namely R12, G1 and HT. D-F)
Polar representations of different plasmid-bearing populations n drug-free media: D) cells carrying only pBRT-12, E) a heterozygous population where both plasmids
co-exist at a cellular level, and F) homozygous cells with only pBGT-1. Black dotes denote the expected value of the corresponding plasmid copy-number distribution.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.3. Imaging flow cytometry

Population-level experiment measurements were performed by
sampling 1 ml of overnight culture and measured their fluorescence
using an imaging flow cytometer (Amnis ImageStream Mark II by
Luminex). INSPIRE software was used to acquire data discriminating by
area, aspect ratio, focus, and side scatter features. GFP fluorescence was
excited at 488 nm with 25 mv intensity, and DsRed fluorescence was
excited at 561 nm with 200 mv intensity. Populations data files were
processed using IDEAS 6.2 software and feature values were exported
and analyzed using bespoke scripts implemented in Python program-
ming language.

2.4. Microfluidic devices

We used PDMS (polydimethylsiloxane) microfluidic chips obtained
from wafers manufactured using soft photolithography (SU-82000.5,
micro resist technology GmbH). In particular, we used a micro-che-
mostat (Mondragón-Palomino et al., 2011) that contains multiple in-
puts (a cell-loading input, a shunt, and two for different growth media),
as well as two waste outputs. Media inputs are mixed at different
proportions using a red fluorescent dye (rhodamine) diluted in one of
the media inputs. This device contains 48 chambers of 40x50x.95 μm,
capable of trapping approximately 500 bacterial cells in the same focal
plane. Each chamber is open to a big channel on two sides and, when
chambers are filled, bacteria in the edges are pushed out of the chamber
and washed away. We used this device to obtain high-throughput po-
pulation-level data derived from single-cell measurements at different
time-points. We also used a dual-input mother-machine (Kaiser et al.,
2018) device in which bacteria are trapped in a comb-like channels
architecture. Mother cells restrained at the bottom of each channel and,
as they grow and divide, daughter cells are pushed downwards to a
larger channel and washed away. We used this microfluidic chip to
keep track of mother cells for very long periods of time, while quanti-
fying fluorescence and other morphological attributes.

2.5. Cell loading and environmental control

Growth media was loaded into 60 ml-syringes connected to the
PDMS chip through Tygon tubes and assorted Luer connectors. The
pressure inside the chip is controlled with vertical linear actuators and a
digital signal generator that controls the height of each syringe. This
Dial-A-Wave (DAW) system (Ferry et al., 2011) enables precise control
over the extracellular environmental conditions. For the purpose of this
paper, we use this DAW to introduce antibiotics into the chip gradually,
until reaching a maximum dose that is then maintained until all cells
are killed, a protocol we refer to as a ramp experiment. Later we will
introduce antibiotics following a sinusoidal signal to alternate selective
pressures periodically.

Initial inoculates of HT cells were grown overnight in the presence
of sub-lethal doses of chloramphenicol and ceftazidime, in order to
clear homozygous cells from the culture and obtain a well-balanced HT
culture. A sample was then transferred to 200ml of fresh LB and grown
at 30 °C until reaching an OD600 = 0.3. After centrifuging, cells were re-
suspended in 5 ml of LB, and this dense culture was used to inoculate
the microfluidic chip. For all microfluidics experiments, we used LB
media supplemented with arabinose at 0.5% and Tween20 (Sigma-
P2287) at 0.075%. In all cases, cells were allowed to grow and divide
multiple cell cycles in a drug-free environment, allowing us to de-
termine the baseline fluorescent intensity of the population. We later
use this value to normalize our data and compare fluorescent intensities
obtained for different channels.

2.6. Microscopy and image acquisition

Time-lapse images of microfluidic experiments were acquired using

a Nikon Eclipse Ti-E epifluorescence microscope equipped with differ-
ential interface contrast (DIC), a motorized stage and a perfect focus
system that allows us to obtain long-time time-lapses. The microscope
was controlled by the Nikon NIS-Elements AR 4.20 program and is
equiped with a Lexan Enclosure Unit with Oko-touch temperature
control that allows us to incubate the microfluidic chips. The experi-
ments are conducted at 30 °C. For all experiments, time-lapse movies
were acquired with a 100× Plan APO objective without analog gain
and with field and aperture diaphragms as closed as possible to avoid
photobleaching. DIC images were taken at 9v DIA-lamp intensity with
exposure of 200 ms, DsRed channel (excitation from 540 to 580 nm,
emission from 600 to 660 nm filter) with exposure of 600 ms, GFP
channel (excitation from 455 to 485 nm, emission from 500 to 545 nm)
with 300 ms exposure. Images were taken every 5 or 10 min, depending
on the experiment.

2.7. Image processing and analysis

Microscopy time-lapse movies were analyzed using a semi-auto-
mated ImageJ (Schneider et al., 2012) analysis pipeline that imple-
ments a deep-learning algorithm for image segmentation (Van Valen
et al., 2016). Cell tracking and lineage reconstruction were performed
in Python using standard numerical and geometric libraries (NumPy,
Shapely, Pandas, Scipy, Matplotlib). Data and code are openly dis-
tributed and available for download at https://github.com/ccg-esb-lab/
uJ.

In short, the image processing pipeline consists on 1) organizing TIF
files generated by NIS Elements, 2) aligning traps and using rigid mo-
tion transformation to correct for x-y drift in time-lapse images, 3) using
Parallel Interactive Deconvolution with a theoretical point spread func-
tion generated with PSF Generator to produce a segmentable image, 4)
using DeepCell (Van Valen et al., 2016) to segment images and obtain
binary masks, 5) cell detection and automatic correction of ROIs, 6)
manual correction of a binary mask, 7) data acquisition by overlapping
masks in different fluorescent and bright field channels, 9) cell tracking
using a feature-aided nearest-neighbor algorithm and lineage re-
construction and, finally, 10) data analysis and visualization. The goal
of this image bioinformatics pipeline is to acquire time-series of fluor-
escent intensity and other morphological properties of individual cells,
as well as to obtain population-level statistics to estimate, for instance,
the mean cell duplication rate of the population or changes in the shape
of the fluorescence distribution.

2.8. Estimation of plasmid copy-number and plasmid frequency

There are two quantities we estimate from fluorescent data: plasmid
copy-number (PCN) and plasmid frequency (PF). Previous studies have
established that gene copy-number and fluorescent intensity are posi-
tively correlated, both when carried in chromosomes (Bergmiller et al.,
2017) or in plasmids (Rodriguez-Beltran et al., 2018; Ghozzi et al.,
2010). Therefore we will use flow cytometry and fluorescent micro-
scopy to determine the relative intensity of individual cells with respect
to the population-level mean (it was previously determined that the
plasmids used in this study are carried, on average, ~19 copies of the
plasmid per cell) (San Millan et al., 2016).

Also, we estimate the proportion of each plasmid type carried in
each cell from the relative fluorescent intensity measured on different
channels. Let us define Φg and Φr the fluorescent intensity of cell i
measured in the green and red channels, respectively. As fluorescent
proteins have different maturation times and intrinsic brightness
(Balleza et al., 2018), we normalized the data by dividing every channel
measurements by the maximum intensity and obtained relative in-
tensity values for each channel, quantities that we will denote as Φg and
Φr .

We argue that, in this case, a polar representation of fluorescent
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data is more appropriate, as illustrated in the diagram shown in Fig. 1B.
That is, to estimate plasmid fraction from flow cytometry or micro-
fluidic data we will transform the Φ /Φg r  ratio into polar coordinates:

≔PF θ~ arctan(Φ /Φ ).r g 

This expression allows us to estimate the fraction of plasmids (PF),
pBGT-1 plasmid with respect to the pBRT-12 plasmid, a quantity we
refer to as relative fluorescent intensity and denote as θ. Similarly, we can
use r to approximate the absolute plasmid copy number (PCN) by as-
suming that fluorescent intensity is proportional to the number of co-
pies of the gene carried by each cell,

≔ +PCN r~ Φ Φ .g r
2 2 

However, the assumption of a linear relationship between PCN and
absolute fluorescent intensity does not always hold and, as discussed
extensively in (Tal and Paulsson, 2012), prevents from using absolute
fluorescent intensities as a proxy for plasmid copy number. For this
reason, in this paper we will restrict our analysis to using θ to evaluate
changes in the relative abundances of each allele (i.e. the plasmid
fraction) in response to different environmental conditions.

3. Results

3.1. Using flow cytometry to study population dynamics of heterogeneous
populations

A fundamental problem in plasmid biology is to determine en-
vironmental conditions that enable costly plasmids to be stably main-
tained in bacterial populations (Harrison et al., 2015; Loftie-Eaton
et al., 2016; Porse et al., 2016), This problem is of particular interest for
bioengineers and synthetic biologists, as genetic manipulations of mi-
croorganisms generally use plasmids as cloning vectors, despite being
metabolically costly and, therefore, susceptible to be lost through
purifying selection. In contrast, as drug-resistant genes tend to be car-
ried in plasmids (Alekshun and Levy, 2007; San Millan, 2018), it is also
a problem of interest for biomedical scientists to determine conditions
that cure drug-resistant plasmids of pathogenic populations (Boucher
et al., 2009) and to evaluate the probability of fixation of drug-re-
sistance mutations (Ilhan et al., 2019; Rodriguez-Beltran et al., 2018).

Independently of the motivation, experimental studies routinely
estimate the fraction of plasmid-bearing cells within a bacterial popu-
lation by replicating bacterial colonies from non-selective agar plates
onto plasmid-selective and non-selective media. In recent years, other
studies have used a combination of flow cytometry (FCM) and real-time
quantitative PCR (qPCR) to estimate the mean plasmid copy number of
the population (Ng et al., 2010) and to determine the relative abun-
dance of plasmid-bearing cells (Bahl et al., 2004). The benefit of the
FCM and qPCR is that both are cultivation-independent and provide
precise estimations about the mean plasmid copy number of the po-
pulation.

Here we use an image-based FCM (see Methods) to study the re-
sulting PCN distribution that emerges from exposing genetically-diverse
populations to different selection regimes. We focus on a well-char-
acterized experimental system of drug resistance evolution: plasmid-
mediated TEM-1 evolution towards ceftazidime resistance in Escherichia
coli. The numerous ways in which TEM has evolved suggests that it can
respond very specifically to each β-lactam, and therefore has been used
extensively to study the molecular evolution in response to different
selection regimes, both when TEM is encoded in the chromosome
(Barlow and Hall, 2002; Barlow and Hall, 2003) or in plasmids (Santos-
Lopez et al., 2017; Rodriguez-Beltran et al., 2018). Indeed, nearly every
β-lactamase that has been identified as a resistance determinant among
clinical bacteria has experienced molecular evolution in response to the
use of different β-lactam antibiotics, with over 215 variant TEM β-lac-
tamases identified with differences in amino acid sequence and

susceptibility to β-lactam antibiotics (Barlow and Hall, 2002).

3.1.1. Relative allele frequencies are modulated by selection and
segregational drift

Our experimental systems consists of a bacterial population con-
taining small (5.3Kb), non-conjugative, multicopy plasmids (pBGT-1
with mean PCN=19.12 ± 1.56, and pBRT-12 with 21.1 ± 0.85
plasmids in average (San Millan et al., 2016)), different fluorescent
markers (GFP and DsRed respectively, both under the araC promoter)
and TEM genes that produce different variants of β-lactamase, an en-
zyme that hydrolyzes the active portion of β-lactam antibiotics (Knox,
1995).

It has been established there is a fitness cost associated with syn-
thesizing fluorophores, in this case, expressed in terms of a reduced
growth rate in the presence of arabinose with respect to the same strain
growing in arabinose-free environments (two-tailed t-test, p-value<
0.05, N = 4). For this reason, all experiments described in this study
were performed in the presence of arabinose. Crucially, both fluor-
escent proteins impose a similar fitness burden and therefore no sig-
nificant differences in growth rate were observed in populations pro-
ducing either GFP or DsRed proteins (two-tailed t-test, p-value=0.512,
N = 6) (San Millan et al., 2014), therefore allowing us to associate
changes in fluorescent intensity to differences in fitness of the corre-
sponding TEM alleles, and not due to differential cost of producing
fluorescent proteins.

Fig. 1A displays a composite microscopy image showing that a po-
pulation of HT cells presents high levels of heterogeneity; while some
cells are only detected in DsRed or GFP channels (corresponding to cells
with high proportions of either plasmid), other cells exhibit analogous
levels of fluorescence in both channels (corresponding to heterozygous
cells bearing both pBGT-1 and pBRT-12, mean PCN=22.3 ± 4.7).
Fig. 1C shows raw fluorescent intensity determined with flow cyto-
metry of cells in a heterozygous population, revealing the existence of
three main clusters, corresponding to homozygous cells (R12 and G1)
and the heterozygous population (HT). All flow cytometry experiments
were performed in triplicate, with fluorescence distributions obtained
by sampling 20,000 cells from the corresponding population.

Fig. 1D and F show that clonal populations of G1 and R12 are only
present in the corresponding region of the polar coordinate system
when measured after 24 h of growth. In contrast, HT cells carry both
plasmids and are therefore scattered throughout the polar plane. This
large dispersion in PCN and PF has been predicted by theoretical
models of multicopy plasmid dynamics (Peña-Miller et al., 2015;
Münch et al., 2019), suggesting that populations bearing multicopy
plasmids can present cell-to-cell differences in total plasmid copy-
number and in plasmid frequency. Indeed, recent clinical studies have
suggested that gene amplification and copy-number variability in drug-
resistance genes yield heteroresistant populations (Andersson et al.,
2019), potentially leading to treatment failure in clinical settings
(Nicoloff et al., 2019; Wang et al., 2014; Band and Weiss, 2019).

A consequence of bearing plasmids with different variants of TEM is
that heterozygous populations exhibit heterogeneous profiles of re-
sistance. In this case, blaTEM−1 provides resistance to ampicillin (AMP),
while blaTEM−12 to ceftazidime (CAZ) and partially to AMP (Rodriguez-
Beltran et al., 2018; Mroczkowska and Barlow, 2008). So, to determine
how different environments modulate the distribution of plasmids, we
inoculated a population of HT cells in drug-free media and, after 24 h,
used a flow cytometer to obtain the distribution illustrated in Fig. 1E.
Similarly, we exposed a heterozygous population to a sub-lethal con-
centration of ampicillin (8 mg/ml) and estimated the resulting plasmid
distribution after 24 h (see Fig. 2A). We then repeated this assay with
ceftazidime (8 μg/ml) and, analogous to AMP, HT cells exhibited large
dispersion, while R12 and G1 showed variability in PCN, but not in PF.

We then clustered the population based on their relative fluorescent
intensities and counted the number of cells in each group. The relative
abundances of each subpopulation are illustrated in Fig. 2E. Note how,
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in drug-free media, segregational instability produces homozygous
subpopulations, either carrying blaTEM−1 or blaTEM−12. As blaTEM−1 is
susceptible to ceftazidime, we did not observe any G1 cells when HT
was exposed to CAZ (left bar in Fig. 2E). The absence of cells with
relative fluorescent intensity values in the range corresponding to G1
cells can also be seen in Fig. 2A and C (arrow in 2C shows the location
of the G1 subpopulation). In contrast, as blaTEM−12 confers resistance to
CAZ, then R12 increased in abundance relative to G1 when exposed to
ceftazidime.

Similarly, in environments that positively select for cells carrying
plasmids encoding blaTEM−1, the resulting distribution shows an in-
crease in the relative abundance of G1 (right bars in Fig. 2E). Note that,
in this case, R12 cells were able to survive treatment with ampicillin, a
consequence of a previously reported cross-resistance to both AMP and
CAZ provided by the blaTEM−12 gene (Rodriguez-Beltran et al., 2018;
Salverda et al., 2010). We also performed statistical tests to analyze the
PF distributions of the populations under each selective regime and

found that they are significantly different (Kruskal-Wallis H sta-
tistic=649.6, p-value< 0.001). Similarly, pair-wise Kolmogorov-
Smirnov tests demonstrated significant differences when performing
direct comparisons between AMP-CAZ, AMP-LB, and CAZ-LB distribu-
tions (p-values< 0.001).

Based on the relative abundances of each strain, we estimated the
relative fitness of G1 with respect to R12 under different selection re-
gimes. Fig. 2F shows that using ampicillin increases the relative fre-
quency of G1 and, as a result, produces an increase in the relative fit-
ness of G1 compared to R12. Conversely, CAZ positively selects for R12,
and therefore G1 was suppressed in the population.

Altogether, by analyzing the distribution of fluorescent intensities in
different environments, we conclude that selection imposed by anti-
biotics modifies the relative frequency of different alleles in the popu-
lation. There are, however, two possible explanations for this behavior:
selection acting on populations (this would mean that population-level
dynamics is a consequence of changes in the relative abundances of

Fig. 2. Polar representation of fluorescent intensities obtained using flow cytometry of HT populations exposed to A) ceftazidime, and B) ampicillin. Distributions
were obtained by sampling 60,000 cells from three independent biological replicates. C-D) Histograms of relative intensity for both selection regimes, CAZ and AMP,
respectively. Note how AMP maintains a subpopulation of G1 cells, while in CAZ, only HT and R12 cells are present at the end of the experiment (the arrow in C
points towards relative intensity values that correspond to G1). This is a consequence of R12 cells being resistant to both antibiotics and G1 only resistant to AMP. In
drug-free media, both homozygous populations are present, resulting from the segregation of HT cells into G1 or R12. E) The relative density of each subpopulation
under different environmental conditions, determined by clustering cells according to their relative fluorescent intensity. Each bar corresponds to a replicate
experiment in each environment (N = 3). F) Relative fitness of G1 with respect to R12, after 24 h of growing under different environmental conditions (N = 3). As
expected, AMP provides a fitness benefit for G1, while CAZ positively selects for R12.
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different subpopulations) or at a level of single-cells (implying that
segregation and replication may not be completely stochastic). Using a
flow cytometer does not help us differentiate between these possibi-
lities, so, in the remainder of this paper, we will use microfluidic de-
vices that allow us to correlate selection with changes in allele fre-
quency, both at a level of single-cells and in bacterial populations.

3.2. Using microfluidics to analyze plasmid dynamics of individual cells

We have shown that flow cytometry can be used to evaluate the
effect of selection in the frequency of heterozygous cells in the popu-
lation. However, flow cytometry data does not provide time-resolved
information about the rate of fixation of different alleles or about the
stochastic nature of segregation and replication of plasmids. To over-
come these limitations, we used microfluidics to perform long-term
observations of individual cells and, with the aid of fluorescent mi-
croscopy and image processing algorithms, quantified segregational
drift in heterozygous populations.

In particular, we will use a microfluidic device known as a dual-
input mother-machine, designed to precisely control the environmental
conditions while trapping individual cells in narrow channels under
controlled environmental conditions. As cells grow and divide,
daughter bacterial cells are pushed downwards to the channel opening
and washed away of the device. We will use this microfluidic chip to
perform long-term observations of single-cells and quantify temporal
changes in the fraction of pBRT-12 and pBGT-1 plasmid, with the aim of
studying segregational drift resulting from the stochastic segregation
and replication of multi-copy plasmids.

3.2.1. Intracellular plasmid dynamics is stochastic and not influenced by
antibiotic selection

The benefit of mother-machine microfluidic devices is that they
allow us to culture individual cells for hundreds of generations under
the microscope, in contrast to microscope culture protocols which do
not actively remove progeny during growth and therefore get rapidly
saturated. Multiple mother-machine devices have been proposed
(Taheri-Araghi and Jun, 2015; Long et al., 2013), but we will we use a
dual-input mother machine (Kaiser et al., 2018), as it allows us to
precisely control the concentration of antibiotic inside the microfluidic
chip.

First, we performed a long-term experiment consistent on introdu-
cing HT cells into the device and observing them for a period of 72 h.
We observed four device positions with ~13 microchannels per field of
view, leading to 244,249 single-cell measurements, with mean fluor-
escent intensities of 212 ± 81 for GFP and 155 ± 51 in DsRed,
normalized relative intensity of 1.42 ± 0.53, and normalized absolute
intensity of 0.46 ± 0.14. By acquiring images in multiple channels
(GFP represented in green and DsRed in magenta) we can follow
changes in fluorescence intensity between division events. Fig. 3A
shows a montage of mother cells at specific time-points, with their
corresponding time-series represented in Fig. 3B (black line corre-
sponding to the cell illustrated in Fig. 3A, while grey lines show the
relative intensity time-series obtained for other representative cells in
the device).

It is important to highlight that time-series shown in Fig. 3B are very
long time-series (72 h, up to 99 cell cycles), allowing us to quantify the
difference in relative fluorescent exhibited by each cell at the moment
of division and to estimate the difference in fluorescence between
consecutive cell cycles, a quantity we refer to as Δ relative intensity.
Fig. 3E shows how the time-series of Δ relative intensity produces in-
creases in one fluorescent channel as frequently as increases in the
other direction. As a result, the difference between relative intensity
values estimated in consecutive time-points is approximated by a
Normal distribution with μ = 0.00057 a σ2 = 0.0092 (see Fig. 3D).

Fig. 3F shows the partial autocorrelation function obtained for time-
series of relative intensity in a drug-free environment. Note lags> 0 are

within the 95% confidence interval, suggesting that changes in plasmid
frequency are generated by an auto regressive process of first order,
consistent with the tenet that random segregation and replication of
plasmids are inherently stochastic processes. Another interesting fea-
ture of our data is that intracellular plasmid diversity can be maintained
for many generations in individual bacterial cells. Of course, pheno-
typic delay (Sun et al., 2018) and fluorescent protein stability (Balleza
et al., 2018) could also stabilize fluorescence, but only for a few cell
cycles.

However, a consequence of the random segregation of plasmids is
that there is a probability larger than zero of segregating plasmids
unevenly between mother and daughter cells. In our experimental
system, this would be reflected as large jumps in Δ relative intensity.
Fig. 3C shows a kymograph obtained from a time-lapse movie (Sup-
plementary Movie S1), whereby the cell in the top of the channel
(marked with a black triangle) corresponds to the time-series shown in
Fig. 3B. Top and middle images correspond to GFP and DsRed channels,
while the bottom image illustrates masks obtained after image seg-
mentation, colour-coded to represent the relative intensity value ob-
tained after normalizing both fluorescent channels. Note how, in gen-
eral, fluorescence between mother and daughter cells appears to be
correlated but, occasionally, a mother cell segregates plasmids un-
evenly upon division, producing daughter cells with different plasmid
configurations (for example the magenta lineage in the kymograph). In
the extreme scenario, HT inherits only plasmid of one type to the
daughter cell, producing R12 or G1 cells with a probability that can be
estimated from a binomial distribution.

In summary, we have established that, as generally assumed by
theoretical models of plasmid dynamics (Ilhan et al., 2019; Rodriguez-
Beltran et al., 2018; Santer and Uecker, 2019; San Millan et al., 2014)
segregation and replication of multicopy plasmids are noise-driven
stochastic processes. Now we would like to evaluate if plasmid fre-
quencies are under selection at the level of single cells. To precisely
control the concentration of antibiotics inside the microfluidic chip, we
developed an automated pressure control system (Ferry et al., 2011)
that allows us to introduce different antibiotics into the device and
quantify changes in intracellular plasmid frequency in response to en-
vironmental change. So we introduced HT cells into the device and
observed them for 15 h previous to the introduction to the antibiotic
following a ramp protocol: linearly increasing the concentration of
antibiotic until reaching a lethal dose and maintaining that con-
centration constant until all cells are dead.

When introducing ampicillin, we found that the distribution of Δ
relative intensity remained symmetric with respect to zero, implying
that AMP is not selecting for pBGT-1 plasmids at the level of individual
cells. We repeated this microfluidic experiment, now introducing CAZ
to select for pBRT-12 plasmids, and confirmed that the shape of the
resulting distribution of Δ relative intensity was not skewed towards
DsRed. Fig. 3G illustrates violin plots of Δ relative intensity for different
selective pressures. Note that, independently of the environmental
condition, the shape of the distributions is qualitatively the same (for
AMP a Normal distribution with μ = − 0.00073, σ2 = 0.0129, and for
CAZ with μ = 0.01298, σ2 = 0.0098). We performed a non-parametric
Kolmogorov-Smirnov normality test comparing each distribution
against a theoretical Normal distribution with the corresponding μ and
σ2 (H0: the distribution is not Normal, p-values=
(0.527, 0.493, 0.8017) for LB, AMP, and CAZ respectively). In con-
clusion, regardless the selection regime, the distribution of Δ relative
intensities follows a Normal distribution, indicating that changes in
relative abundances of different plasmids in single-cells are driven by
random noise and not by selection.

3.3. Using microchemostats to study plasmid dynamics in bacterial colonies

We have established that selection can modulate plasmid frequency
distributions of heterozygous bacterial populations, and also that
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intracellular plasmid dynamics is a noise-driven process that does not
seem to be affected by selection. Therefore we argue that the shift in
fluorescence observed at a population-level must be a consequence of
antibiotics selecting for subpopulations with different plasmid config-
urations. To evaluate this hypothesis and to study the effect on selection
in heterozygous populations, we used a different microfluidic device
that provides high-throughput time-resolved information about thou-
sands of individual cells simultaneously.

Microchemostats are designed to cultivate bacterial colonies for
long periods of time in controlled and well-mixed environments
(Mondragón-Palomino et al., 2011; Moffitt et al., 2012; Lopatkin et al.,
2016; Li et al., 2019). In particular, here we use a microchemostat
adapted from (Mondragón-Palomino et al., 2011) that consists of two
parts: the signal generator and the cell confinement region. In the
confinement section there are 48 rectangular chambers distributed in
four rows. Each containment chamber measures 40 × 50 × 0.95 μm3,
with two sides open to a large channel where media is introduced and
cells are washed out of the device. Since E. coli cells are approximately 1
μm in diameter, confining them in these microfluidic traps allows the

simultaneous observation of a colony of approximately 500 cells in the
same focal plane. Furthermore, as with the dual-input mother machine,
we can use a signal generator to dynamically control the extracellular
concentration of antibiotics.

3.3.1. Heteroplasmy is unstable in environments with constant selection
Fig. 4 illustrates an experiment where a population of HT cells was

cultured in drug-free media for 6 h, followed by the introduction of
antibiotics using a linear ramp. When drug concentration reached a
lethal dose (4 mg/ml for AMP and 8 μg/ml for CAZ), the concentration
of antibiotics was maintained constant until all cells were dead (see
Supplementary Movies S2 and S3). Fig. 4C shows montages of selected
traps at different time-points (CAZ in the top and AMP at the bottom).

We used our image processing pipeline to analyze all traps con-
taining cells growing exponentially after growing overnight inside the
device. As in the flow cytometry data, we measured the relative and
absolute intensity of each individual cell but, as opposed to flow cy-
tometry data, our microchemostat allows us to track cells in time and
perform lineage reconstruction. In particular, we obtained 557 lineages,

Fig. 3. A) Mother cells at different time-points. Note how the intensity in GFP and DsRed channels changes in time. B) Time-series of relative intensity for individual
cells in a long-term experiment. In black data obtained from the mother cell illustrated in A), while 4 other cells are shown in grey. Circles represent division events.
C) Kymograph showing the progeny of the mother cell shown in A). From the images obtained in GFP (top) and DsRed (middle), we can use image processing to
estimate the relative intensity of each cell (bottom). D) Probability density function of the difference in relative fluorescence of an individual cell between consecutive
frames. This distribution can be approximated by a Normal distribution with mean near zero and σ2 = 0.096. E) Δ relative intensity as a function of time for cells
shown in B). F) Partial autocorrelation function of Δ relative intensity. G) Distributions of Δ relative intensity are normally distributed. A symmetric distribution
suggests a random walk that is not correlated with the selective pressure imposed by the environment (left: ceftazidime, middle: drug-free, and right: ampicillin).
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corresponding to 5,870 cells in the CAZ experiment and 498 lineages of
5,754 cells for AMP. Of course, as the colony is growing exponentially,
most cells are pushed out of the trap and washed out of the device, so
only a few lineages were observed from start to end of the experiment.
We recovered 48 complete lineages for CAZ and 46 for AMP and,
consistent with the results shown in Fig. 3G, the resulting time-series
were not correlated with the selective pressure imposed by the en-
vironment.

Now, by clustering the population according to their relative
fluorescent intensity, we determined the fraction of cells with different
plasmid frequencies. As illustrated in Fig. 4A, exposing a population of
HT cells to CAZ produces an increase in the fraction of cells with high
levels of DsRed and low intensity values of GFP, implying that selection
favours cells with a higher proportion of pBRT-12 plasmids. The black
arrow in the polar distributions shown in Fig. 4B denotes changes in the
mean relative intensity of the population after 6 h of exposure to CAZ
and, as expected, points towards R12. In contrast, when introducing
AMP into the device, the fluorescent intensity distribution appeared to
be shifted towards GFP, consequence of G1 cells being positively se-
lected for, a feature that can be seen in Fig. 4D and in the polar

distribution shown in Fig. 4E.
Notably, the shift is larger when using CAZ than in the presence of

AMP. This is explained by blaTEM−1 providing partial resistance to AMP
and therefore the relative fitness (and thus the rate of fixation) is larger
for R12 in ceftazidime than G1 in ampicillin. In any case, HT cells re-
duced in frequency and are destined to be outcompeted by homozygous
subpopulations: R12 if using CAZ or G1 in an AMP environment. This is
consistent with previous studies showing that heteroplasmy is unstable
in constant environmental conditions (Rodriguez-Beltran et al., 2018).
It has also been reported that fluctuating environments can stably
maintain intracellular genetic diversity for long-time intervals, so in the
following section we will evaluate this hypothesis using microchemo-
stats.

3.3.2. Fluctuating environments stabilize genetic diversity
By alternating both antibiotics periodically, we experimentally ex-

plored if fluctuating environmental conditions can stabilize plasmid-
mediated heterozygosis. Specifically, we introduced HT cells into the
device and observed them in LB for about 3 h before introducing an-
tibiotics. To implement a fluctuating selection regime, we generated a

Fig. 4. A) Plasmid fraction as a function of time for a population of HT cells exposed to a ramp of CAZ. B) Polar distribution of cells at the end of the experiment. The
black arrow represents changes in the mean plasmid frequency of the population, before and after antibiotic exposure. C) Montage of microscopy images (GFP
channel in green, and DsRed in magenta, with both channels overlaid). D) Fraction of cells with a higher proportion of pBGT-1 plasmids is increased when AMP is
introduced into the device. E-F) Population-level distribution at the end of the experiment. Note how the black arrow points towards higher values of GFP, suggesting
that the mean plasmid frequency of the population moved towards cells carrying relatively more copies of pBGT-1. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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sinusoidal signal of period 2 h such that, when CAZ concentration is at
100%, then AMP is at 0%, and vice versa, as illustrated in Fig. 5C (in
green the concentration of AMP and in magenta of CAZ, both normal-
ized to the same critical concentrations used before). We diluted a
fluorescent dye to one of the antibiotic inputs to calibrate the height of
the syringes, but this also allowed us to use the fluorescent microscope
to validate that cells are exposed to the expected proportion between
both antibiotics. Magenta dots represent DsRed measurements in a cell-

free area of the device and correspond very precisely with the drug-
deployment protocol sent by the signal generator.

Fig. 5B shows a lineage reconstruction where the black line corre-
sponds to an individual cell observed for the complete duration of the
experiment, while other cells in the lineage are illustrated in cyan. Note
how, as previously shown in the mother-machine, the intracellular
plasmid dynamics appears to be random and is not correlated with the
environmental signal. A consequence of the random segregation and

Fig. 5. A) Oscillatory drug deployment protocol consisting on CAZ (magenta) and AMP (green) being alternated every two hours. Magenta circles correspond to
measured values of fluorescent dye also introduced into the device together with CAZ. B) Black line represents a single-cell lineage obtained from a time-lapse movie
of a microchemostat. Black circles represent division events and relative fluorescence of daughter cells is illustrated in cyan. C) Relative fluorescent distribution
obtained after 18 h of exposure to fluctuating CAZ and AMP selective pressures. D) Population-level relative intensity distributions at different time-points. A
consequence of alternating selection for both alleles is that intermediate values of relative fluorescence are maintained for long time periods, suggesting that genetic
diversity can be stabilized in fluctuating environmental conditions. E) Microscopy images at the beginning (left) and at the end (right) of the experiment. Note how,
after 18 h of fluctuating selection, the resulting population is composed of R12 and G1 cells, but also of HT cells. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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replication of plasmids is that, after only a few generations, the dis-
tribution of alleles in the population presents a large variance, as shown
in Fig. 5C.

As we have previously argued, we cannot make inferences about the
stability of plasmid-mediated heterozygosis from single-cell data. So we
included the remaining cells to our analysis and estimated relative in-
tensity distributions at different time-points. Fig. 5D shows violin plots
representing the distribution estimated every hour. As opposed to the
constant drug environment discussed previously, in the alternating se-
lection regime, the mean relative intensity is centered around HT
throughout the duration of the experiment (although the variance in-
creases in time). Fig. 5E and F show composite images at t = 0 and at
t = 18 h, extracted from Supplementary Movie S4, revealing the pre-
sence of G1 and R12 cells at the end of the experiment and, crucially, of
cells still bearing both plasmids.

4. Discussion

The rate at which pathogenic bacteria evolve resistance to anti-
biotics is dramatically decreasing the efficacy of current antimicrobial
treatments. It may seem a surprising statement but, after more than a
century of using antimicrobials in the clinic, some of the evolutionary
forces that drive the emergence and spread of drug resistance in pa-
thogenic bacteria are still poorly understood. For instance, most of our
understanding of drug resistance adaptation assumes that clonal po-
pulations growing in constant environments present similar suscept-
ibility and resistance profiles to antibiotics, while actually clinical iso-
lates can present a high degree of heterorresistance generated, in many
cases, by heterogeneous expression of plasmid-borne resistance genes
(Andersson et al., 2019).

In a previous paper (Rodriguez-Beltran et al., 2018), we used
mathematical modelling and experimental evolution to argue that
multi-copy plasmids can provide a platform to increase intracellular
genetic diversity and, in consequence, enhance the probability of sur-
vival to dynamic environmental conditions. Here we used microfluidics
and fluorescence microscopy to study, with single-cell resolution, the
effect of selection in the relative abundance of incompatible plasmids
carrying different versions of an antibiotic resistance gene and a
fluorescent marker. As expected, in the absence of selection, the sto-
chastic nature of plasmid replication and segregation renders plasmids
unstable and decreases allele frequency in the population. In contrast,
positive selection for plasmid-encoded genes stabilizes plasmids at high
copy-numbers, increasing the frequency of the corresponding allele and
promoting resistance to the antibiotics used.

Of course, natural environments are not constant but alternate se-
lection between subpopulations with different genetic configurations.
Therefore, in dynamic environments, it may be optimal for bacterial
populations to present genetic heterogeneity, thus increasing the
probability that some individuals are pre-adapted to future environ-
mental conditions (Ackermann, 2015). Indeed, in agreement with pre-
vious laboratory studies (Rodriguez-Beltran et al., 2018), we showed
that fluctuating selection - in this case, alternating the extracellular
concentration of different β-lactam antibiotics - maintained in-
tracellular genetic diversity in the population for longer than constant
environmental regimes.

Although previous studies have successfully deployed a combina-
tion of experimental evolution (MacLean and San Millan, 2015;
Harrison and Brockhurst, 2012; Holloway et al., 2007), genome se-
quencing (San Millan et al., 2014; Harrison et al., 2015; Porse et al.,
2016) and mathematical modeling (Stewart and Levin, 1977; Santer
and Uecker, 2019; San Millan et al., 2014; Wein et al., 2019; Yurtsev
et al., 2013) to evaluate the population dynamics that emerge in re-
sponse to different environmental conditions, the intrinsic resolution of
flow cytometers and qPCR machines do not allow us to dissect sto-
chastic plasmid dynamics (generated by randomly replicating and
partitioning plasmids) from deterministic population-level effects (e.g.

differences in relative fitness associated with expressing multiple al-
leles). So, in this paper, we used single-cell microfluidics to generate
high-throughput fluorescent intensity data of heterozygous bacterial
populations exposed to a range of selective regimes.

In particular, we used computer vision algorithms to analyze time-
lapse movies acquired in multiple fluorescence channels, allowing us to
characterize the allele distribution in the population in terms of the
relative and absolute fluorescent intensities of its constituent cells. This
allowed us to evaluate directly the contribution of selection and
random genetic drift in the rate of fixation and extinction of different
plasmid variants. We showed, using a mother-machine to restrain in-
dividual cells and follow them for very long periods, that changes in
plasmid frequency are the consequence of a noise-driven process that is
not correlated with the direction and strength of selection imposed by
the environment.

We conclude by arguing that imaging and microfluidics can provide
a potentially useful approach to study the interaction between in-
tracellular plasmid dynamics and selection imposed by the environ-
ment, and therefore could be used to increase our understanding of the
complex interaction between mobile genetic elements, their bacterial
hosts, and the environment.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.plasmid.2020.102517.
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